SIL Safety Manual for Fisher® 2052 Actuators

Purpose
This safety manual provides information necessary to design, install, verify and maintain a Safety Instrumented Function (SIF) utilizing the Fisher 2052 diaphragm rotary actuator.

Introduction
This safety manual provides information necessary to design, install, verify and maintain a Safety Instrumented Function (SIF) utilizing the Fisher 2052 diaphragm rotary actuator. This manual provides necessary requirements for meeting the IEC 61508 or IEC 61511 functional safety standards.

Terms and Abbreviations
Safety: Freedom from unacceptable risk of harm.

Functional Safety: The ability of a system to carry out the actions necessary to achieve or to maintain a defined safe state for the equipment / machinery / plant / apparatus under control of the system.

Basic Safety: The equipment must be designed and manufactured such that it protects against risk of damage to persons by electrical shock and other hazards and against resulting fire and explosion. The protection must be effective under all conditions of the nominal operation and under single fault condition.

Safety Assessment: The investigation to arrive at a judgment - based on the facts - of the safety achieved by safety-related systems.

Fail-Safe State: State where valve actuator is de-energized and spring is extended.

Fail Safe: Failure that causes the valve to go to the defined fail-safe state without a demand from the process.

Fail Dangerous: Failure that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state).

Fail Dangerous Undetected: Failure that is dangerous and that is not being diagnosed by automatic stroke testing.

Fail Dangerous Detected: Failure that is dangerous but is detected by automatic stroke testing.

Fail Annunciation Undetected: Failure that does not cause a false trip or prevent the safety function but does cause loss of an automatic diagnostic and is not detected by another diagnostic.

Fail Annunciation Detected: Failure that does not cause a false trip or prevent the safety function but does cause loss of an automatic diagnostic or false diagnostic indication.

Fail No Effect: Failure of a component that is part of the safety function but that has no effect on the safety function.

Low demand mode: Mode, where the frequency of demands for operation made on a safety-related system is no greater than twice the proof test frequency.
Acronyms

FMEDA: Failure Modes, Effects and Diagnostic Analysis

HFT: Hardware Fault Tolerance

MOC: Management of Change. These are specific procedures often done when performing any work activities in compliance with government regulatory authorities.

PFD_{Avg}: Average Probability of Failure on Demand

SFF: Safe Failure Fraction, the fraction of the overall failure rate of a device that results in either a safe fault or a diagnosed unsafe fault.

SIF: Safety Instrumented Function, a set of equipment intended to reduce the risk due to a specific hazard (a safety loop).

SIL: Safety Integrity Level, discrete level (one out of a possible four) for specifying the safety integrity requirements of the safety functions to be allocated to the E/E/PE safety-related systems where Safety Integrity Level 4 has the highest level of safety integrity and Safety Integrity Level 1 has the lowest.

SIS: Safety Instrumented System – Implementation of one or more Safety Instrumented Functions. A SIS is composed of any combination of sensor(s), logic solver(s), and final element(s).

Related Literature

Hardware Documents:

Fisher 2052 Diaphragm Rotary Actuator Product Bulletin - 61.1:2052 D103295X012

Fisher 2052 Diaphragm Rotary Actuator Instruction Manual D103296X012

Guidelines/References:

- Safety Integrity Level Selection – Systematic Methods Including Layer of Protection Analysis, ISBN 1-55617-777-1, ISA
- Safety Instrumented Systems Verification, Practical Probabilistic Calculations, ISBN 1-55617-909-9, ISA

Reference Standards

Functional Safety

- ANSI/ISA 84.00.01-2004 (IEC 61511 Mod.) Functional Safety – Safety Instrumented Systems for the Process Industry Sector

Device Description

The Fisher 2052 diaphragm rotary actuator is a compact actuator that reduces the valve/actuator envelope dimensions to provide greater valve installation versatility for both skids and tight processing lines where space is at a premium.

The 2052 actuator can be installed on rotary-shaft valve bodies for throttling or on-off applications. The actuator linkage features a clamped shaft lever and a single pivot point to reduce lost motion between the actuator and the valve. The result is 0.5% or less typical variability for a Fisher rotary control valve assembly.

In addition to its small size, the 2052 actuator delivers several operations and maintenance advantages. It has an inherent failsafe position on loss of operating air. In contrast to piston style actuators that rely on o-ring seals, the double-sided diaphragm in the 2052 actuator provides a longer service life.

The 2052 actuator offers a unique, nested spring design that requires no bench set, simplifying the actuator selection process. Powder paint coating is standard and offers an excellent corrosion-resistant
finish on all external steel and cast iron parts. The 2052 actuator is available in three sizes, accommodating shaft sizes 12.7 to 38.1 mm (1/2 to 1-1/2 inch).

The 2052 actuator is used with a rotary valve to control process fluids that can be used in a wide variety of applications. They are typically used with other interface components (valve positioner or solenoid valve) to provide a final element subsystem for a Safety Instrumented Function (SIF). The 2052 actuator provides ISO 5211 mounting for simplified valve mounting.

Designing a SIF Using a Fisher 2052 Actuator

Safety Function
When the 2052 actuator is de-energized, the actuator and valve shall move to its fail-safe position. Depending on which configuration is specified fail-closed or fail-open, the actuator will rotate the valve disk to close off the flow path through the valve body or open the flow path through the valve body.

The 2052 actuator is intended to be part of final element subsystem as defined per IEC 61508 and the achieved SIL level of the designed function must be verified by the designer.

Environmental limits
The designer of an SIF must check that the product is rated for use within the expected environmental limits. Refer to the Fisher 2052 Diaphragm Rotary Actuator Product Bulletin for environmental limits.

Application limits
The 2052 actuator materials of construction are specified in the product bulletin. A range of materials are available for various applications. The serial card will indicate what the materials of construction are for a specific actuator. It is especially important that the designer check for material compatibility considering on-site chemical contaminants and air supply conditions. If the 2052 actuator is used outside of the application limits or with incompatible materials, the reliability data provided becomes invalid.

Diagnostic Response Time
A 2052 actuator does not perform any automatic diagnostic functions by itself and therefore it has no diagnostic response time of its own. However, automatic diagnostics of the final control subsystem may be performed such as Partial Valve Stroke Testing (PVST). This typically will exercise the actuator and valve over a small percentage of its normal travel without adversely affecting the flow through the valve. If any failures of this PVST are automatically detected and annunciated, the diagnostic response time will be the PVST interval time. The PVST must be performed 10 times more often than an expected demand in order for credit to be given for this test. Typically this test could be performed monthly or weekly.

Design Verification
A detailed Failure Mode, Effects, and Diagnostics Analysis (FMEDA) report is available from Emerson Process Management. This report details all failure rates and failure modes as well as the expected lifetime.

The achieved Safety Integrity Level (SIL) of an entire Safety Instrumented Function (SIF) design must be verified by the designer via a calculation of PFD_{AVG} considering architecture, proof test interval, proof test effectiveness, any automatic diagnostics, average repair time and the specific failure rates of all products included in the SIF. Each subsystem must be checked to assure compliance with minimum hardware fault tolerance (HFT) requirements. The exida exSILentia tool is recommended for this purpose as it contains accurate models for the 2052 actuator and its failure rates.

When using a 2052 actuator in a redundant configuration, a common cause factor of at least 5% should be included in the Safety Integrity calculations.

The failure rate data listed the FMEDA report is only valid for the useful lifetime of a 2052 actuator. The failure rates will increase after this time period. Reliability calculations based on the data listed in the FMEDA report for mission times beyond the useful lifetime may yield results that are too optimistic, i.e. the calculated Safety Integrity Level will not be achieved.
SIL Capability

Systematic Integrity

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer. A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated without “prior use” justification by the end user or diverse technology redundancy in the design.

Random Integrity

The Fisher 2052 diaphragm rotary actuator is classified as Type A devices according to IEC 61508, having a hardware fault tolerance of 0. The complete final element subsystem, with a 2052 actuator and rotary valve as the final control element, will need to be evaluated to determine the Safe Failure Fraction of the subsystem. If the SFF for the entire final element subsystem is between 60% and 90%, a design can meet SIL 2 @ HFT=0.

Safety Parameters

For detailed failure rate information refer to the Failure Modes, Effects and Diagnostic Analysis Report for the Fisher 2052 actuator.

Connection of the Fisher 2052 Actuator to the SIS Logic-solver

The final element subsystem (consisting of a positioner, 2052 actuator, and a rotary valve) is connected to the safety rated logic solver which is actively performing the Safety Function as well as any automatic diagnostics designed to diagnose potentially dangerous failures within the 2052 actuator, valve and any other final element components (i.e. Partial Valve Stroke Test).

General Requirements

The system’s response time shall be less than process safety time. The final control element subsystem needs to be sized properly to assure that the response time is less than the required process safety time. The 2052 actuator will move the valve to its safe state in less than the required SIF’s safety time (a typical value is 3 seconds) under the specified conditions.

All SIS components including the 2052 actuator must be operational before process start-up.

The user shall verify that the 2052 actuator is suitable for use in safety applications.

Personnel performing maintenance and testing on the 2052 actuator and valve shall be competent to do so.

Results from the proof tests shall be recorded and reviewed periodically.

The useful life of the 2052 actuator is discussed in the Failure Modes, Effects and Diagnostic Analysis Report for the 2052 actuator.
Installation and Commissioning

Installation
The Fisher 2052 diaphragm rotary actuator must be installed per standard practices outlined in the instruction manual.

The environment must be checked to verify that environmental conditions do not exceed the ratings.

The 2052 actuator must be accessible for physical inspection.

Physical Location and Placement
The 2052 actuator shall be accessible with sufficient room for the valve, actuator, pneumatic connections, any other components of the final control element. Provisions shall be made to allow for manual proof testing.

Pneumatic piping to the actuator shall be kept as short and straight as possible to minimize the airflow restrictions and potential clogging. Long or kinked pneumatic tubes may also increase the valve closure time.

The 2052 actuator shall be mounted in a low vibration environment. If excessive vibration can be expected special precautions shall be taken to ensure the integrity of pneumatic connectors or the vibration should be reduced using appropriate damping mounts.

Pneumatic Connections
Recommended piping for the inlet and outlet pneumatic connections to the 2052 actuator is stainless steel or PVC tubing. The length of tubing between the 2052 actuator and the control device, such as a solenoid valve, shall be kept as short as possible and free of kinks.

Only dry instrument air filtered to 50 micron level or better shall be used.

The process air pressure shall meet the requirements set forth in the installation manual.

The process air capacity shall be sufficient to move the valve within the required time.
Table 1. Recommended Full Stroke Proof Test

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bypass the safety function and take appropriate action to avoid a false trip.</td>
</tr>
<tr>
<td>2</td>
<td>Interrupt or change the signal/supply to the 2052 actuator to force the actuator and valve to perform a full stroke to the Fail-Safe state and confirm that the Safe State was achieved and within the correct time.</td>
</tr>
<tr>
<td>3</td>
<td>Restore the supply/signal to the 2052 actuator and confirm that the normal operating state was achieved.</td>
</tr>
<tr>
<td>3</td>
<td>Inspect the 2052 actuator and the other final control element components for any leaks, visible damage or contamination.</td>
</tr>
<tr>
<td>4</td>
<td>Record the test results and any failures in your company’s SIF inspection database.</td>
</tr>
<tr>
<td>5</td>
<td>Remove the bypass and restore normal operation.</td>
</tr>
</tbody>
</table>

Table 2. Proof Test Coverage Fisher A81, 8580 Butterfly Valves, and Control-Disk Valves and 2052 Actuator

<table>
<thead>
<tr>
<th>Device</th>
<th>Application</th>
<th>No PVST</th>
<th>PVST</th>
</tr>
</thead>
<tbody>
<tr>
<td>2052 Actuator</td>
<td>Return Spring Fully Extended to Safe State</td>
<td>93%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Operation and Maintenance

Suggested Proof Test
The objective of proof testing is to detect failures within a 2052 actuator that are not detected by any automatic diagnostics of the system. Of main concern are undetected failures that prevent the Safety Instrumented Function from performing its intended function.

The frequency of proof testing, or the proof test interval, is to be determined in reliability calculations for the Safety Instrumented Functions for which a 2052 actuator is applied. The proof tests must be performed more frequently than or as frequently as specified in the calculation in order to maintain the required Safety Integrity of the Safety Instrumented Function.

The proof test shown in table 1 is recommended. The results of the proof test should be recorded and any failures that are detected and that compromise functional safety should be reported to Emerson Process Management. The suggested proof test consists of a full stroke of the 2052 actuator.

Repair and replacement
Repair procedures in the 2052 actuator instruction manual must be followed.

Useful Life
The useful life of the 2052 actuator is 10 to 15 years, or 10,000 cycles, whichever results in the shortest lifetime.

Manufacturer Notification
Any failures that are detected and that compromise functional safety should be reported to Emerson Process Management. Please contact Emerson Process Management customer service or your local Emerson Process Management service representative.

Status of the Document

Releases
Version History: (Version, Status, Date)
Appendix A

Sample Startup Checklist

This appendix provides a sample Start-up Checklist for a 2052 actuator. A Start-up Checklist will provide guidance during the final control elements employment.

Start-Up Checklist

The following checklist may be used as a guide to employ the 2052 actuator in a safety critical SIF compliant to IEC61508.

<table>
<thead>
<tr>
<th>#</th>
<th>Activity</th>
<th>Result</th>
<th>Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>By</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target Safety Integrity Level and PFD_{AVG} determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct valve mode chosen (Fail-closed, Fail-open)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design decision documented</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pneumatic compatibility and suitability verified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIS logic solver requirements for valve tests defined and documented</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Routing of pneumatic connections determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIS logic solver requirements for partial stroke tests defined and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>documented</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design formally reviewed and suitability formally assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical location appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pneumatic connections appropriate and according to applicable codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIS logic solver valve actuation test implemented</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance instructions for proof test released</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verification and test plan released</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation formally reviewed and suitability formally assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verification and Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical connections verified and tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pneumatic connection verified and tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIS logic solver valve actuation test verified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety loop function verified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety loop timing measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bypass function tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verification and test results formally reviewed and suitability formally assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubing blockage / partial blockage tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety loop function tested</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note

Neither Emerson, Emerson Process Management, nor any of their affiliated entities assumes responsibility for the selection, use, or maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains with the purchaser and end-user.